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ABSTRACT

The statistics of ground-based retrievals of cloud liquid water path using the microwave water radiometer
(MWR) are typically assumed to be independent of the cloud’s absolute position in the column. Furthermore,
translational invariance implies statistical parity, i.e. invariance under reflection, of cloud-base height (zbot)
and cloud-top height distributions. This symmetry is necessarily broken, especially under conditions of high
boundary-layer relative humidity for which a minimum large-scale lifting condensation level leads to the gen-
eration of a significant positive skewness in the distribution function of zbot. We suggest that the signature of
this boundary effect is visible in ARM MWR time-series collected at the TWP site. Motivated by the MWR
analysis, we incorporate a minimum lifting condensation level into the analytic model of unresolved low-cloud
optical variability developed by Jeffery & Austin (J. Atmos. Sci., to appear). Preliminary results indicate that
the effect of cloud-base height skewness on mean oceanic low-cloud reflectivity averaged over GCM spatial scales
(order 100 km) is significant.
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1. INTRODUCTION

Numerous studies have established that the determination of average cloud reflectivity, R, using only the first
moment of shortwave (SW) optical depth, τSW, via the approximation, R = R(τSW), systematically underesti-
mates R1–5. This systematic underestimation results from the convexity of R(τ) and is called the plane-parallel
homogeneous (PPH) bias. Of course, the PPH approximation is avoidable if the in-cloud probability distribu-
tion function of τSW, PτSW , is known. Then, by definition, R =

∫
R(ξ) PτSW(ξ)dξ. The PPH approximation

also leads to biases in the determination of cloud longwave (LW) optical properties 6.

Observational studies of low-cloud Pτ generally find a nearly Gaussian distribution when the variance of
τ , σ2

τ , is relatively small and exponential—or possibly log-normal—tails when σ2
τ is relatively large

4,7–10. This
general behaviour was explained by Considine et al.11 who showed that a normal distribution of cloud thickness
combined with a linear low-cloud liquid water density profile leads to a distribution of longwave optical depth,
PτLW , with tails ranging from Gaussian to exponential. An extension of the Considine model for τSW exhibits
a similar behaviour12. Wood and Taylor13 related fluctuations in longwave optical depth, τLW, at fixed cloud-
top height, ztop, to fluctuations in potential temperature, θ, and total water, qt. Thus normal distributions
of θ and qt at constant ztop are broadly consistent with observational distributions of τLW with Gaussian-to-
exponential tails. Jeffery and Austin14 considered both τLW and τSW and demonstrated that values of the Pτ

width parameter νSW ≡ (τSW/στ )2 and cloud fraction, Ac, compiled by Barker et al.7 from Landsat data are
consistent with a normal distribution of variability that includes cloud-top height fluctuations, z ′

top.

In the work of Considine et al.11 and Jeffery and Austin14 the pdf of cloud-base height, zbot, is not explicitly
considered. As we shall see in Sect. 4 the zbot-skewness, ζzbot , in these models is, implicitly, ≤ 0 when the
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underlying distributions of θ and qt are symmetric. Moreover, ζzbot in the Wood and Taylor13 model is,
explicitly, ≤ 0 although the authors restrict their analysis to the case where Ac = 1 and ζzbot = 0. In contrast,
in-situ and surface-based measurements of zbot distributions of low-clouds often indicate a positive skewness
15–17. In this article we suggest a simple mechanism for the creation of positive skewness in zbot, namely,
the thermodynamic boundary condition zbot ≥ 0 where the reference height z = 0 is a large-scale minimum
lifting condensation level. We show that under conditions of high boundary-layer relative humidity, symmetric
distributions of θ and qt result in ζzbot > 0. This breaks the statistical parity, i.e. symmetry by reflection,
between zbot and ztop fluctuations implied by the Considine et al.11 model.

This article is organized as follows. In Sect. 2 we analyze the relationship between ν ≡ (τ/στ )2 and Ac

in both 45 Landsat images and 6 years of daily ARM microwave water radiometer data and find evidence
of relatively large ν that are not explained by translationally invariant models with symmetric underlying
distributions11,13,14. The Jeffery-Austin model of low-cloud optical statistics is briefly derived in Sect. 3.1, and
the boundary-condition zbot ≥ 0 is then incorporated into the model in Sect. 3.2. In Sect. 4 a new parameter βc

is introduced that is a measure of the influence of the constraint zbot ≥ 0, and in Sect. 5 the βc-dependence of
ν–Ac relations is explored. The impact of βc on mean in-cloud SW reflectivity is briefly investigated in Sect. 6,
and Sect. 7 contains a summary.

2. MOTIVATION

We begin by considering the relationship between ν ≡ (τ/στ )2 and Ac first analyzed by Barker et al.7. Barker
et al. retrieved νSW and Ac from 45 Landsat images and suggested that νSW is a monotonic function of Ac.
This suggestion found theoretical support by Jeffery and Austin 14 who derived the following expressions for
τp
SW and Ac:

τp
SW ∼ A−1

c

∫ S0+Γwztop

−∞
(S0 + Γwztop − ξ)5p/3 Ps∗(ξ)dξ, (1)

Ac =
∫ S0+Γwztop

−∞
Ps∗(ξ)dξ, (2)

where S0 is the mean water density surplus or deficit, Γw is the liquid water density lapse rate and s∗ represents
fluctuations in θ, qt and ztop. These equations are derived and discussed in detail in Sect. 3.1. For our purposes
here, the key feature of Eqs. (1) and (2) is that they predict a 1-to-1 mapping between νSW and Ac for a given
Ps∗ .

Although a theoretical calculation of Ps∗ is not available at this time, a reasonable estimation is a stretched
exponential distribution of the form

Ps∗ = c1 exp(−c2|s∗|α), (3)

where 1 ≤ α ≤ 2 and the constants c1 and c2 are set by the normalization
∫

Ps∗(ξ)dξ = 1 and
∫

ξ2 Ps∗(ξ)dξ =
σ2

s∗ . Note that for α = 2 Ps∗ is Gaussian while the choice α = 1 gives an exponential distribution. A Gaussian
distribution of unresolved variability was assumed in the pioneering work of Sommeria and Deardorff 18 and
Mellor19 and an exponential distribution by Bougeault20.

A comparison of νSW vs Ac predicted by Eqs. (1–3) for α ∈ {2, 5/3, 4/3, 1} and νSW ≤ 3 is shown in Fig. 1.
Also shown is Landsat data from Table 2 in Barker et al.7. The figure reveals that broadening the distribution
of s∗, i.e. α ↓, decreases νSW for a given Ac in the range Ac < 0.95. Overall the envelop of the present model
with 1 ≤ α ≤ 2 does a good job of explaining most of Barker et al. 7’s data in the range νSW ≤ 3. The notable
exception, however, are a number of scenes (5–7) with values of νSW that are significantly larger than the
prediction of the present model. A possible explanation is an exceedingly narrow Ps∗ , i.e. α > 2, but this is
unlikely since distributions of tracers, e.g. θ and qt, in turbulent velocity fields have pdfs that are Gaussian or
broader.

Further evidence of relatively large values of ν for a given Ac is present in ground-based microwave radiometer
(MWR) measurements of cloud liquid water path, i.e. τLW, at the DOE ARM Tropical Western Pacific (TWP)
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Figure 1. Comparison of νSW vs Ac for νSW ≤ 3. Lines are from Eqs. (1–3) with α ∈ {2, 5/3, 4/3, 1}. Landsat data is
from Table 2 in Barker et al. 7. The present model does not capture the very large values νSW found in some Landsat
scenes.

Manus site. This ARM data product consists of typically 24 hours of measurements at an interval of 20 seconds
(about 4000 measurements per file). Assuming a constant sweep of around 5 m s−1 each data file represents
a 400-500 km segment of τLW measurements at a spatial resolution of 100-200 meters. A comparison of νLW

vs Ac calculated from MWR measurements is shown in Fig. 2. The data encompasses the period 1996-2002,
and scenes where the liquid water path exceeds 0.16 cm ≈ 1600 g m−2 are excluded to limit contamination by
multi-layer clouds. A threshold of 0.003 cm ≈ 30 g m−2 is used in this analysis. A comparison of the Landsat
and MWR data in figures 1 and 2, respectively, reveals that the MWR data exhibits greater scatter. This is not
unexpected since a single Landsat scene contains over 4 million pixels whereas a MWR data segment contains
roughly 4000 measurements.

The present model of Jeffery and Austin14 differentiates between SW scattering and LW absorption. The
LW analog of Eq. (1) is14

τp
LW ∼ A−1

c

∫ S0+Γwztop

−∞
(S0 + Γwztop − ξ)2p Ps∗(ξ)dξ. (4)

Note that the only difference between Eqs. (1) and (4) is the exponent of the integrand 21. The predictions of
Eqs. (2–4) are also shown in Fig. 2 for α ∈ {2, 5/3, 4/3, 1}. As in Fig. 1, the envelope of the present model
captures the relatively smaller values of νLW quite well but larger values are not well explained. However, it
should be emphasized that the MWR data segments also contain a diurnal signal which could potentially impact
the observed ν–Ac relationship. An analysis of the effect of the diurnal cycle on single-layer cloud statistics is
beyond the scope of the present investigation.

In the following sections a model of single-layer cloud optical statistics is developed that accounts for the
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Figure 2. Comparison of νLW vs Ac for νSW ≤ 3. Lines are from Eqs. (2–4) with α ∈ {2, 5/3, 4/3, 1}. MWR data is
from the ARM TWP site. As per Fig. 1, relatively large values of νLW are not captured by the present model.

relatively low values of ν found in Landsat and MWR data.

3. MODEL DERIVATIONS

3.1. Derivation of the Jeffery–Austin Model

We begin this section with a derivation of the model of low-cloud optical statistics developed by Jeffery and
Austin14 [See also Eqs. (1–4)]. Consider a single-layer cloud field. As in Jeffery and Austin 14 we itemize these
important assumptions: (i) horizontal variability of the cloud field exceeds vertical variability and (ii) cloud
liquid water increases linearly with height above cloud base. Our notation is as follows. The variable dependence
(x) labels unresolved horizontal variability, whereas (z) indicates a vertical dependence which by assumption
(i) is essentially non-stochastic, i.e. vertical fluctuations are assumed negligible.

Consider the Sommeria-Deardorff-Mellor statistical cloud scheme 18,19 for cloud liquid water density, ql,
combined with assumption (i):

ql(x, z) = aL{S(z)− s(x)}H , (5)

where S is the mean water density surplus (S > 0) or deficit (S < 0), s(x) represents horizontal fluctuations in
θ and qt, aL < 1 is a parameter that accounts for condensational latent-heat release and {A}H : {A < 0}H =
0, {A ≥ 0}H = A is a Heaviside bracket. Furthermore, using assumption (ii) we have S(z) = S0 + Γwz where
z = 0 is an arbitrary reference height in the boundary layer, e.g. the surface.

Using Eq. (5) we evaluate the integral of qp
l (x, z) from cloud base zbot(x) to cloud top ztop(x) = ztop+z′top(x):

∫ ztop(x)

zbot(x)

qp
l (x, z) dz =

ap
LΓ

−1
w

p+1
{S0+Γwztop−s∗(x)}p+1

H , (6)
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where
s∗(x) = s(x)− Γwz′top(x), (7)

and we have used zbot = Γ−1
w (−S0+ s) from (ii). Note that Eq. (7) for s∗ includes fluctuations in ztop while the

approach of Wood and Taylor13 assumes z′top = 0.

Formulation of the shortwave and longwave optical depths follows from Eq. (6) given the appropriate
functional relation τ ∼ ∫

func(ql, . . .) dz. At this point, it is convenient to introduce the cloud thickness
h(x) = ztop(x)− zbot(x) so that Eq. (6) is simply

∫ ztop(x)

zbot(x)

qp
l (x, z) dz =

(aLΓw)p

p+1
hp+1(x).

Following Considine et al.11, τLW is strictly given by the “h2 model”

τLW(x) ∼ aL

2Γw
{S0 + Γwztop − s∗(x)}2

H , (8)

while the “h5/3 model” is more appropriate for τSW
14,21:

τSW(x) ∼ 3a2/3
L

5Γw
{S0 + Γwztop − s∗(x)}5/3

H . (9)

Eqs. (1), (2) and (4) follow immediately from Eqs. (8–9).

3.2. A New Formulation

In the derivation of τ in the previous subsection we did not consider the effect of a large-scale minimum lifting
condensation level. As a result we were able to combine zbot and ztop fluctuations into a single stochastic
parameter s∗ which represents h-fluctuations. Without loss of generality, let the reference height z = 0 be
a large-scale minimum lifting condensation level. Then a new thermodynamic boundary condition appears:
zbot(x) ≥ 0. Since we did not enforce zbot(x) ≥ 0 in Sec. 3.1, an implicit assumption used in the derivation of
Eqs. (8–9) is ql(x, z = 0) = 0. Below we derive new expressions for τ where ql(x, z = 0) may be greater than
zero.

Returning to Eq. (6) we formulate zbot(x) according to

zbot(x) = Γ−1
w {−S0 + s(x)}H

which includes a Heaviside bracket that was not used in the derivation of Eq. (6). Using Eq. (5) and assumption
(ii) we find ∫ ztop(x)

zbot(x)

qp
l (x, z) dz =

ap
LΓ

−1
w

p+1
[{S0+Γwztop−s∗(x)}p+1

H − {S0−s(x)}p+1
H

]
(10)

which includes a new term. The second term on the rhs of Eq. (10) is proportional to qp
l (x, z = 0) and reflects

the impact of the boundary condition zbot ≥ 0 on τ . The new model formulations of τ follow immediately from
Eq. (10):

τLW(x) ∼ aL

2Γw

[{S0 + Γwztop − s∗(x)}2
H − {S0 − s(x)}2

H

]
, (11)

τSW(x) ∼ 3a2/3
L

5Γw

[
{S0 + Γwztop − s∗(x)}5/3

H − {S0 − s(x)}5/3
H

]
. (12)

Evaluation of Eq. (11) or (12) depends critically on the correlation 〈s∗s〉. Here we consider two limiting
cases:

Model NOZTOP: z′top = 0 and therefore s∗ = s.
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Model DECORR: 〈s∗s〉 = 0.

Model NOZTOP assumes z′
top = 0 which is an assumption also used in Wood and Taylor 13. Model DECORR

has a somewhat subtler interpretation. In this limiting case we assume that z ′
bot and z′top are comparable in

magnitude and strongly correlated. Thus we have that

〈s∗s〉 ∼ 〈(z′top − z′bot)z
′
bot〉 ≈ 0.

Stated another way we assume that h and zbot are uncorrelated and 〈h2〉 �= 0. Model DECORR further implies
〈s2〉 > 〈s2

∗〉.
In the Jeffery-Austin model, NOZTOP and DECORR with Gaussian Ps predict a correlation coefficient,

ρ, between below-cloud boundary-layer humidity, RH, and in-cloud optical depth that potentially brackets
the observational values. In particular ρ is approximately > 0.9 for NOZTOP and ρ = 0 for DECORR. In
comparison, Klein et al.22 found a correlation coefficient ρ = −0.5 between Ac and boundary-layer temperature
using monthly averages which is consistent with a τ–RH correlation in the range 0 < ρ < 1.

4. MODEL EVALUATION

The second term on the rhs of Eqs. (11–12) represents the impact of the boundary condition zbot ≥ 0 on τ and
is absent in the Jeffery-Austin model (i.e. Eqs. (8–9)). A useful dimensionless parameter, βc, may be defined
that reflects the relative contribution of this new term:

βc ≡ fraction{(S0 − s > 0) ∩ (τ > 0)}
fraction{τ > 0} ≡ fraction{ql(z = 0) > 0}

Ac
,

where 0 ≤ βc < 1. Thus βc represents the relative occurrence of cloud, i.e. ql > 0, reaching the minimum lifting
condensation level z = 0. Note that the value of βc is equivalent for both τSW and τLW.

The parameter βc can be evaluated for models NOZTOP and DECORR:

βNOZTOP
c =

∫ S0

−∞ Ps(ξ)dξ∫ S0+Γwztop

−∞ Ps(ξ)dξ
, (13)

βDECORR
c =

∫ S0+Γwztop

−∞ Ps∗(ξ)dξ
∫ S0

−Γwztop+ξ
Ps(ξ2)dξ2∫ S0+Γwztop

−∞ Ps∗(ξ)dξ
∫ ∞
−Γwztop+ξ

Ps(ξ2)dξ2

. (14)

We can see from Eqs. (13–14) that βc → 0 as S0 → −∞ for both models while βc → 1 as ztop → 0 for NOZTOP
and βc → 1 as S0 → ∞ for DECORR. The limit βc → 1 is, therefore, physically interesting.

Before discussing the relationship between βc and ζzbot it is useful to contrast ζzbot(βc = 0) for models
NOZTOP and DECORR when Ps is symmetric. For model NOZTOP

zp
bot(βc → 0) = lim

S0→−∞
A−1

c

∫ S0+Γwztop

S0

Γ−1
w (−S0 + ξ)p Ps(ξ)dξ. (15)

Considering p ∈ {1, 2, 3}, it is clear from Eq. (15) that ζzbot ≤ 0 for model NOZTOP when Ps is symmetric.
For the case (βc = 0, Ac = 1) considered by Wood and Taylor13, we have the special case ζzbot = 0. In contrast
for model DECORR

zp
bot(βc → 0) = lim

S0→−∞
A−1

c

∫ S0+Γwztop

−∞
Ps∗(ξ)dξ

∫ ∞

S0

Γ−1
w (−S0 + ξ2)p Ps(ξ2)dξ2 (16)

so that ζzbot(βc = 0) = 0 for DECORR and symmetric Ps independent of Ac. Thus we find that the Jeffery-
Austin model of cloud optical statistics in which zbot is not treated explicitly allows for a range of ζzbot that
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depends on the assumed relationship between s and s∗. For the two models considered here, i.e. NOZTOP and
DECORR, ζzbot ≤ 0 when Ps is symmetric.

A comparison of ζzbot(βc) for models NOZTOP and DECORR is shown in Fig. 3 for Ac ∈ {0.3, 0.75, 0.95}
and Gaussian Ps and Ps∗ . As expected, increasing βc increases ζzbot for both models. However, model NOZTOP
exhibits a greater Ac-dependence. As per the discussion above, this behaviour is also expected since ζzbot(βc = 0)
is Ac-dependent for NOZTOP but not DECORR.
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Figure 3. Comparison of ζzbot for models NOZTOP and DECORR for Ac ∈ {0.3, 0.75, 0.95} and Gaussian Ps and

Ps∗ . Skewness is calculated from Eqs. (15–16) and the definition ζzbot ≡ z′3
bot/z′2

bot

3/2
. For model DECORR we assume

σs = 2σs∗ . The figure demonstrates that increase βc increases ζzbot for both models.

In the rest of this article, we will use βc as a measure of the influence of the boundary condition zbot ≥ 0 on
the statistics of τ .

5. ν–AC RELATIONS

In Sect. 2 we found that the Jeffery–Austin model of single-layer cloud statistics (or alternatively the models
of Considine et al.11 and Wood and Taylor13) could not account for the relatively large values of ν observed
in Landsat and MWR data. A model extension was developed in Sect. 3.2 that incorporates the boundary
condition zbot ≥ 0. In this section we determine the effect of this boundary condition, or equivalently the
parameter βc, on ν–Ac relations.

Plots of ν vs Ac are shown in Fig. 4 for βc ∈ {0, 0.3, 0.6, 0.8} and Gaussian Ps and Ps∗ . Also shown is the
MWR data from Fig. 2. The βc-dependence of both models is similar; increasing βc increases ν at fixed Ac.
However model DECORR exhibits a relatively greater βc-dependence than model NOZTOP. Overall, the effect
of the boundary condition zbot ≥ 0—evaluated in the simplified framework of the Jeffery–Austin model—is able
to explain the relatively large values of ν exhibited by the data.
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Figure 4. Plots of νLW vs Ac for model NOZTOP (upper panel) and DECORR (lower panel) with Gaussian Ps and
Ps∗ . The moments of τLW are calculated from Eq. (11) and Ac is given in Eqs. (13–14). Lines represent different βc: 0
(—–), 0.3 (– –), 0.6 (- - -), and 0.8 (- – ). For model DECORR we assume σs = 2σs∗ . The figures reveal that increasing
βc increases νLW at fixed Ac.

6. IMPACT OF βC ON REFLECTIVITY

In this section we consider the impact of the boundary condition zbot ≥ 0, i.e. βc > 0, on the mean in-cloud
average SW reflectivity, RSW. We assume RSW(τ) is given by the delta-Eddington 2-stream solution in the
perfectly scattering limit23, hemispherically averaged over solar zenith angle. For the present model:

RSW = A−1
c

∫ ∫
R(τSW(ξ, ξ2)) Ps∗(ξ)dξ Ps(ξ2)dξ2,

where τSW is given by Eq. (12).

Our interest in this section is not the effect of βc on the GCM diagnosis of grid-column averaged quantities,
e.g. Ac and τ . Rather we are interested in the effect of βc on Pτ at fixed τ and τ2, equivalently at fixed (τ , ν).
Thus we assume that (τ , ν) are given and it is our task to determine R.

Our first result is that Pτ (τ = ξ|τ , ν) is approximately independent of βc for model DECORR and Gaussian
Ps∗ and Ps (not shown). Thus although βc effects the diagnosis of (τ , ν), it does not effect the shape of Pτ at
fixed (τ , ν). Turning our attention to model NOZTOP we find that, in this case, Pτ (τ = ξ|τ , ν) does have a
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discernible βc-dependence. The βc-dependence of Pτ impacts R. This is shown in Fig. 5 where RSW calculated
for NOZTOP, τ ∈ {3, 10, 30} and ν ∈ {5/3, 3} is plotted as a function of βc for 0 ≤ βc ≤ 0.8 (lines) and
Gaussian Ps. Also shown is the PPH approximation RPPH = R(τSW) (symbols), corresponding to ν → ∞. All
reflectivities are normalized by RSW(βc = 0).

We note first the well-established result that RPPH overestimates R. This overestimation is the range 10–15%
at ν = 5/3 (upper-panel) and 6–8% at ν = 3 (lower-panel). Second we find that increasing βc decreases R for
model NOZTOP. This decrease is in the range 0–4% at ν = 5/3 and 0–3% at ν = 3. Furthermore the relative
decrease in R increases as τ increases. Thus we conclude the boundary condition zbot ≥ 0 damps R at fixed
(τ , ν) thereby increasing the relative error associated with the PPH approximation. Since R is βc-independent
for model DECORR we further conclude that the correlation 〈s∗s〉 plays a crucial role in determining the net
effect of the boundary-condition zbot ≥ 0 on R.
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Figure 5. Plots of R vs βc for model NOZTOP, τ ∈ {3, 10, 30} and ν = 5/3 (upper-panel) and ν = 3 (lower-panel).
Lines are RSW(βc) calculated from Eq. (12), Gaussian Ps and R(τ) from Eq. 24 in Meador and Weaver 23. Symbols are
the PPH-approximation RPPH = R(τSW), corresponding to ν → ∞. All reflectivities are normalized by RSW(βc = 0).

7. SUMMARY

Recently developed models of low-cloud statistical properties relate Ac and the moments of τ to underly-
ing stochastic distributions: Considine et al.11 specify a Gaussian distribution of cloud-thickness, Wood and
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Taylor13 begin with conserved variables (θ, qt) and Jeffery and Austin14 use (θ, qt) and, in addition, include
cloud-top height fluctuations, z′

top. In the work of Considine et al.
11 and Jeffery and Austin14 discussed above

zbot-skewness, ζzbot , is not explicitly considered while in the Wood and Taylor
13 model, ζzbot ≤ 0. In contrast,

in-situ and surface-based measurements of zbot distributions of low-clouds often indicate a positive skewness
15–17.

In this work we postulate the existence of a large-scale minimum lifting condensation level and we suggest
that this thermodynamic boundary breaks the translational invariance assumed in recent models, leading to
ζzbot > 0 under conditions of high boundary-layer relative humidity, RH. To test our hypothesis we explicitly
incorporate the constraint zbot ≥ 0 into the Jeffery-Austin model of low-cloud optical variability where the
reference height z = 0 is a large-scale minimum lifting condensation level. A parameter βc is introduced that
represents the relative occurrence of cloud liquid water at z = 0 and, thereby, the influence of the constraint
zbot ≥ 0. We find, indeed, that ζzbot increases with increasing βc.

A model analysis reveals that the dimensionless parameter ν = (τ/στ )2 introduced by Barker et al.7 increases
with increasing βc at fixed Ac. This behaviour is significant because both Landsat scenes 7 and ARM MWR
time series exhibit relatively large values of ν that are not explained by the Jeffery-Austin model at βc = 0.
However, the 24-hour MWR data segments also contain a diurnal signal which may influence ν at a given Ac.
In the future we hope to incorporate a diurnal-cycle into our statistical approach.

A preliminary analysis of the impact of βc, i.e. the influence of zbot ≥ 0, on mean in-cloud SW reflectivity, R,
reveals that increasing βc decreases R at fixed (τ , ν) when z′

bot = 0—the special case considered by Wood and
Taylor13. This decrease is in the range 0–4% for βc ≤ 0.8 and increases with increasing τ ; the further reduction
in cloud albedo enhances the well-known PPH bias that results from ν < ∞. On the other hand, when cloud-top
height fluctuations are large and strongly correlated with z′

bot then R is approximately βc-independent at fixed
(τ , ν). These results suggest that the influence of the boundary condition zbot ≥ 0 on low-cloud SW feedback
is strongly modulated by the joint zbot-ztop statistics.
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